
Paper number 261

Dynamic Data Mining:

Exploring Large Rule Spaces by Sampling

Sergey Brin and Lawrence Page

Department of Computer Science

Stanford University

fsergey,pageg@cs.stanford.edu

February 23, 1998

Abstract

A great challenge for data mining techniques is the huge space of potential rules which can

be generated. If there are tens of thousands of items, then potential rules involving three items

number in the trillions. Traditional data mining techniques rely on downward-closed measures

such as support to prune the space of rules. However, in many applications, such pruning

techniques either do not su�ciently reduce the space of rules, or they are overly restrictive.

We propose a new solution to this problem, called Dynamic Data Mining (DDM). DDM

foregoes the completeness o�ered by traditional techniques based on downward-closed measures

in favor of the ability to drill deep into the space of rules and provide the user with a better

view of the structure present in a data set.

Instead of a single determinstic run, DDM runs continuously, exploring more and more of the

rule space. Instead of using a downward-closed measure such as support to guide its exploration,

DDM uses a user-de�ned measure called weight, which is not restricted to be downward closed.

The exploration is guided by a heuristic called the Heavy Edge Property.

The system incorporates user feedback by allowing weight to be rede�ned dynamically. We

test the system on a particularly di�cult data set { the word usage in a large subset of the World

Wide Web. We �nd that Dynamic Data Mining is an e�ective tool for mining such di�cult data

sets.

1 Introduction

A classical market-basket data set consists of a large database of cash register transactions, which

are lists of items. The goal of mining such data is to �nd association rules,1 which are statistical

relationships between the purchases of di�erent items. However, this model generalizes to many

1The classical example is a correlation between the purchase of beer and the purchase of diapers. It is in fact
�ctitious and we put it in this footnote for readers who have seen it too often.

1

domains other than actual cash register receipts from stores. It has been applied to collections of

text documents, census data, and environmental data. Any data set that has a large database of

baskets containing multiple items can �t this model. We use documents as our baskets and words

in the documents as our items. The association rules that may be mined from such a data set

consist of sets of items, called itemsets, and some indication of how they relate. However, even

though this model �ts many data types, data mining algorithms designed to mine supermarket

data do not necessarily work well with all of them.

Traditional market basket mining algorithms exhaustively explore the space of all possible

association rules using downward-closed measures such as support2 for pruning. Recent papers

dealing with supermarket or supermarket-like data report tens of thousands of items with an

average of 5 to 20 items per basket in a database of millions of transactions [AS96a]. Such data

sets generate hundreds of thousands of large itemsets and require several million itemsets to be

tested for support. This mining task can be di�cult but with recent algorithmic advances it is

manageable in reasonable time [AIS93, AS94, Toi96, AS96b, CNFF96, AS96a, ZPOL97, Mue95].

Once the large itemsets are known, a pass is made over them, testing for properties like con-

�dence, interest, and conviction [BMUT97] and rules that meet a number of constraints are pro-

duced. The resulting list of rules can then be queried, visualized, and browsed using a variety of

user interfaces [KMR+94].

However, when standard market basket data analysis is applied to data sets other than market

baskets, producing useful output in a reasonable amount of time is very di�cult. For example,

consider a data set with tens of millions of items and an average of 200 items per basket. Many

items have very high support (80%) and many are highly correlated. In fact there may be over 1034

itemsets meeting a reasonable support threshold (see Section 5.4). A traditional algorithm could

not compute the large itemsets in the lifetime of the universe. Moreover, such a data set may be

much longer or possibly an endless stream of transactions such as news feeds.

Even if these computational di�culties can be overcome, there still remains the problem that

there is a very large number of interesting rules according to any statistical measure. In fact, the

result size may be comparable to the original data. Providing the user a way to look through these

results is a challenging data mining and visualization problem in itself.

Yet many data sets are di�cult to mine because they have many frequently occurring items,

complex relationships between the items, and a large number of items per basket. In this paper

we experiment with word usage in documents on the World Wide Web (see Section 4.2 for details

about this data set). This data set is fundamentally di�erent from a supermarket data set. Each

document has roughly 150 distinct words on average, as compared to roughly 10 items for cash

register transactions. We restrict ourselves to a subset of about 24 million documents from the

web. This set of documents contains over 14 million distinct words, with tens of thousands of

them occurring above a reasonable support threshold. Very many sets of these words are highly

correlated and occur often. In comparison, store transactions have far fewer products that are

2The frequency with which an itemset occurs in the data.

2

sold with reasonable frequency, and their interactions are far more limited. Other examples of

challenging data sets are census data,3 medical histories, and ecological data.

The main di�culty with mining data sets such as these is the size of the space of potential rules

which is exponential in the total number of items. Restrictions on support and rule complexity

help bring the size of this space down to possibly a small polynomial in the number of items, but

for data sets with many correlated items, exhaustive search of this space is still infeasible.

1.1 Itemsets in a Lattice and Downward-Closed Measures

Ø

A B C D

AB AC BC AD BD CD

ABC ABD ACD BCD

ABCD

Boundary of a Downward-Closed Measure

Boundary of a Non-Downward-Closed Measure

Figure 1: A Sample Lattice

A rule generated by mining market basket data involves a set of several items4 called an itemset.

The itemset has a place in the lattice of all possible sets of items ordered by the subset relation.

The empty itemset is at the top and the set of all items is at the bottom. A measure over this lattice

is downward closed if any subset of any itemset has a higher value than the itemset. Therefore,

setting a lower bound on a downward-closed measure for itemsets we will consider draws a boundary

across the itemset lattice below which we don't need to consider. If the space above that boundary

is relatively small (consisting of, say, millions of itemsets), then we can exhaustively search all of

it.5 Figure 1 illustrates an itemset lattice along with the boundaries of both downward-closed and

non-downward-closed measures.

The fundamental problem of mining a market basket data set is to �nd rules which are \in-

teresting." There are various de�nitions of what interesting means in current data mining tech-

3Census data does not have very many distinct attributes in total. However, each basket (person) has many
distinct attributes (e.g. female, drives to work, ...), and they are highly correlated, making it a di�cult data set to
mine (see [BMUT97]).

4There are some generalizations such as hierarchical data mining where classes of items can be used.
5We must also check all the itemsets immediately below the boundary in order to �nd the boundary to begin with.

This is usually the biggest cost of the data mining operation.

3

niques. However, they are invariably either measures which are downward closed or are bounded

by a downward-closed measure. These measures include support, �2 [BMS97],6 and collective

strength [AY].

However, what users in practice �nd interesting may not be bounded by any downward-closed

measure, at least not one that is tight enough to make exhaustive search feasible. Many current

de�nitions of interestingness are motivated by the desire to incorporate some kind of downward

closedness.

In this paper, we take a di�erent approach. We forego the deterministic and complete algo-

rithms o�ered by using downward-closed measures that tightly bound the space of potential rules.

Instead, we consider an arbitrary measure of interestingness we call weight and rely on a randomized

algorithm to explore the space of rules.

1.2 Overview

We present a view of itemsets as weighted hyperedges in a hypergraph. In this view, the goal of

data mining is to discover the heavy hyperedges in this hypergraph. We do so by incrementally

exploring parts of the hypergraph. While the weight function is arbitrary, we observe that in all

cases that we have tested, the weight function has a property called the Heavy Edge Property. This

property allows us to use certain heuristics to guide the exploration of the hypergraph.

To make the exploring process e�cient, we introduce a system we call dynamic data mining,

which samples both the hypergraph and the underlying market basket data to �nd heavy hyperedges

quickly. Our tests of this system on the World Wide Web dataset are described in Section 5.

2 Itemsets as Weighted Hyperedges in a Hypergraph

De�nition 1 (Weight) We de�ne Weight to be an arbitrary real function over itemsets. The

higher the weight of an itemset, the more interesting it is. An itemset, s, is called heavy if

Weight(s) � !, where ! is some weight threshhold (! is not required to remain constant during the

mining process).

We do not place any restrictions upon the weight function such as downward closedness. With-

out knowing any more about the weight function, a simple strategy is to sample random itemsets,

measure their weight, and report the heaviest itemsets. However, for many weight functions on

many data sets there are heuristics that can make mining far more e�ective.

Consider items as nodes in a hypergraph, with itemsets as the hyperedges. The hyperedges

have an associated weight, which is the weight of the corresponding itemset. Figure 2 demonstrates

a simple hypergraph with weighted hyperedges. We denote simple edges (2-itemsets) with straight

line segments and higher order hyperedges with surrounding curves. Heavier lines and curves denote

heavier itemsets.

6
�
2 is actually upward closed, but we are looking for the boundary, so it can still be used for pruning.

4

F

AC

E

D B

G

H

I

J

K

L

M
N

Illustration of the Heavy Edge Property

Heavy Edge
Light Edge

Candidate Edge

O

P

Q

Figure 2: Example of a Weighted HyperGraph

We consider data mining an exploration of this weighted hypergraph. Our goal is to �nd the

hyperedges with high weight. At any point in time in the mining process, we have sampled some

portion of the hypergraph and know the weights of those itemsets. The marked hyperedges in the

�gure are ones we know the weight of. The remainder are unexplored. The hyper-edges marked

with dashed lines are candidates we are considering exploring.

Given a partially explored weighted hypergraph, our goal is to select good candidates to test

their weight. In classical data mining, this is a well de�ned process which takes advantage of

downward-closedness. In our case, we rely on a heuristic called the Heavy Edge Property.

2.1 The Heavy Edge Property

The heavy edge property is an assumption we make about our data and weight function. We have

veri�ed that it holds in our tests and suspect that it holds in most data mining applications to

some extent. However, it is an assumption and the techniques we describe in this paper depend on

it.

Property 1 (Heavy Edge Property { HEP) Hyper-edges that are heavy are likely to have heavy

neighbors.

First we must explain what we mean by neighboring hyper-edges. Certainly, immediate super-

sets of hyper-edges are their neighbors. Assuming the HEP holds, if an itemset has high Weight,

we expect that if we add one item to it, it will have a better than random chance of having high

weight. It will have an even better chance if all immediate subsets of the newly formed itemset

5

have high weight. For example, suppose that HEP holds for the weighted hypergraph in Figure 2.

Since OP , PQ, and OQ all are heavy, then it is likely that OPQ is heavy.

This use of the HEP is similar to the use of downward closure of support to �nd large itemsets.

However, we go beyond this notion of neighbor. We also consider hyper-edges which share all but

one of their items to be neighbors. We call these siblings. For example, since AB and BC are

heavy, it is likely that AC is heavy. More surprisingly, since B already participates in a number of

heavy edges, it is likely that BD is heavier than a random edge. We have veri�ed this phenomenon

to hold in our data. Finally, GHIJK contains very heavy interconnection and therefore is a good

candidate. By comparison, EF is a completely random candidate and is not likely to be heavy.

The correctness of the HEP is a function of the Weight function and of the data set. It is merely

a property that interesting data sets and Weight functions are likely to have. In our tests, the HEP

has held on the data sets we have tested (see Section 5). We demonstrate how to use the heavy

edge property in the following section.

2.2 Patterns for Using the Heavy Edge Property

any oneend twoend

v
append

triangle

hyper-V

Figure 3: Patterns for Generating Candidate Itemsets

Suppose that the HEP holds for a particular data set and weight function. This still leaves the

problem of exactly how to generate candidate itemsets which likely have high weight based on a set

of known itemsets with weights. For this we use a number of patterns for generating candidates.

The e�ectiveness of every particular pattern is dependent upon the data set and weight function.

Figure 3 shows the seven patterns we tested. For each pattern, the solid lines represent known

heavy edges and the dashed line represents the generated candidate hyper-edge. The any pattern

generates completely random edges and is used to seed the initial set of hyperedges before anything

else is known and it adds necessary randomness throughout the mining process. It is the only

pattern which does not use the Heavy Edge Property. The oneend, twoend, and v patterns produce

edges (2-itemsets) based on hyper-edges which have already found to be heavy. Oneend requires

one of the two items to belong to a known heavy edge while twoend requires that both are known.

6

The v pattern is the \transitive" pattern and it generates the third edge of a triangle if two heavy

edges already exist..

The triangle, append, and hyper-V create or grow higher order hyper-edges. Triangle creates a

hyper-edge of degree 3 from three heavy degree 2 edges which are its subsets. Append simply adds

one item to a heavy hyperedge if the item is already linked to at least two items in the hyperedge.

Finally, hyper-v is a generalization of v and it merges two heavy hyperedges that share at least two

items.

One can imagine far more sophisticated ways of generating candidates. However, they would

have to depend on the data and the weight function. We have taken the approach of having

several patterns and testing the e�ectiveness of each pattern for generating heavy candidates in our

particular data set. We measure this e�ectiveness of each pattern in Section 5.1.

3 Dynamic Data Mining (DDM)

The HEP provides a mechanism through which we can mine di�cult data sets but it still leaves the

issue of e�ciency. To make an entire pass over the data for every set of candidates is prohibitively

expensive. To solve this problem we introduce Dynamic Data Mining. It includes several major

architectural changes to the data mining process. Instead of making mining a �nite, closed-ended

process which produces a well de�ned, complete set of itemsets, we make it a continuous process,

generating continually improving sets of itemsets (see next section). Furthermore, the process

takes advantage of intermediate counts to form estimates of itemsets' occurrence so there is no

need to wait until the end of a pass to estimate an itemset's weight. The weight function guides the

exploration of the hypergraph by taking advatnage of the Heavy Edge Property. Since the weight

function can be modi�ed on the
y at runtime, this provides a nice mechanism for user feedback

with quick response.

3.1 Architecture

The traditional architecture for data mining consists of three major components { an engine which

�nds large itemsets (Itemset Counting Engine { ICE), a rule generator, and a user interface for

viewing rules. In the traditional architecture, the data is the input to the ICE. The ICE sends

its output to the rule generator which in turn sends its output to the rule viewer. All further

interaction is between the user and the rule viewer (in some cases the rule generator may be rerun

using the same set of large itemsets).

Our dynamic data mining architecture has several major di�erences from the traditional archi-

tecture and consists of three major components:

DICE Instead of an ICE, we have a Dynamic Itemset Counting Engine (DICE) which is described

in detail in section 3.3. The DICE is a simple fast engine for counting itemsets. It operates

on a continuous feed of data and supports three operations:

7

Traditional Data Mining Architecture

Data
ICE

Itemset Counting
 Engine

Rule
Generator

Dynamic Data Mining Architecture

Data
DICE

Dynamic Itemset
Counting Engine

Itemset
Manager

Figure 4: Architectural Changes

AddItemset { Mark where in the stream we started counting this itemset and begin counting

its occurrences.

DeleteItemset { Stop counting an itemset. This call is important because there is a �nite

amount of memory for counting itemsets. This is a signi�cant constraint. Because of

the wide nature of the data, there are incredibly many itemsets that could be counted.

GetItemsets { Get a list of all the itemsets that are being counted along with their current

counts.

Itemset Manager The DICE is managed by the Itemset Manager (IM). It periodically gets up-

dates from the DICE using GetItemsets and decides which itemsets should be added or

removed based on the counts it gets back. The IM also interacts with the user through a

web-based user interface. It produces rules for the itemsets with highest weight and ships

them to the user interface. It also accepts modi�cations to working parameters from the UI.

As a result the user directly a�ects functioning of the Itemset Manager and hence the DICE.

The results of a modi�cation from the UI are seen at the next update (varies from one to �ve

minutes).

User Interface The web-based user interface allows the user to adjust the parameters of the

Itemset Manager and to give preference to certain itemsets over others. It provides quick

feedback of the e�ects of the user's changes while the system is running.

8

3.2 The Itemset Manager

The Itemset Manager must receive itemsets with counts from the DICE and perform several oper-

ations: output interesting rules to the user, remove itemsets it decides are not useful, and add new

itemsets it considers promising. The Weight function may change over time through user feedback.

The Itemset Manager runs the following loop continually:

1. DICE.Run(k) run the DICE for k transactions

2. Itemsets = DICE.GetItemsets() retrieve the results

3. ComputeWeights(Itemsets) compute the weights of all the itemsets

4. PurgeItemsets(Itemsets) Delete itemsets with low weight

5. SelectNew(Itemsets) Add new itemsets to the DICE.

6. repeat

The functions which are critical to the behavior of the Itemset Manager are the SelectNew

function, and the PurgeItemsets function. We describe these functions in the following sections.

3.2.1 The SelectNew Function: Using the Heavy Edge Property

The SelectNew function generates candidate hyperedges for testing. It makes use of the Heavy

Edge Property via the patterns in Section 2.2. Currently, it randomly generates an equal number

of instances from each pattern though sometimes a pattern may generate fewer instances because it

is not possible to apply it (for example, we can only use the any pattern at the very start). A future

enhancement may allow the Itemset Manager to learn which patterns are e�ective for a particular

data set and to favor them.

3.2.2 The PurgeItemsets Function

Since the DICE is constrained by memory in terms of the number of itemsets it can count, it is

necessary to remove itemsets to make room for additions. Therefore, the Itemset Manager deletes

certain itemsets at each point in its main loop. The algorithm for this is very simple { all itemsets

which are not heavy are deleted. The weight threshhold, ! varies so that the top n heaviest edges

are considered heavy.7 Note that this is a nontrivial decision. An itemset which is not heavy may

become heavy as its counts are updated or as the Weight function changes. Therefore, a reasonable

alternative strategy may be to give near-heavy edges a probation period to become heavy. We

experimented with this probation strategy. However, we found it did not work as well as the simple

strategy because by testing a near-heavy edge for a longer time, we lose opportunities to test new

edges. Furthermore, as we �nd heavier and heavier edges, the threshold to be in the top n heavy

7Note: currently there are actually separate threshholds for 2-itemsets and higher order itemsets so that the top
n 2-itemsets and the top m higher order itemsets are heavy.

9

edges moves up. Therefore, it is unlikely that a borderline edge would be heavy for long and make

a signi�cant contribution to the mining process.

An itemset are also pruned away if the system has discovered a superset of the itemset with

higher weight.

3.3 DICE { the Dynamic Itemset Counting Engine

In [BMUT97], Brin, Tsur, Ullman, and Motwani present an algorithm for counting large itemsets

called DIC { Dynamic Itemset Counting. A traditional large itemset counting algorithm proceeds

level-wise; it makes one pass over the data for each size of itemsets it is counting. After it counts

all the 1-itemsets, it knows which 2-itemsets to count and counts those on the next pass. After it

counts the 2-itemsets it knows which 3-itemsets to count and counts those on the next pass and so

on.

Instead of going through the data one pass at a time, the DIC algorithm goes through the

data one chunk at a time. For the �rst chunk, it counts only the 1-itemsets. Then it estimates

which 2-itemsets to count and starts counting those in the second chunk. Then it estimates which

3-itemsets to count and starts counting those in the third chunk and so on. Once it gets through

the �rst pass, it stops counting the 1-itemsets and it rewinds to the start of the data. Then it goes

through the �rst chunk again and �nishes counting the two-itemsets. Then it �nishes counting the

3-itemsets, and so on8.

The DICE system takes advantage of the DIC algorithm's ability to start and stop counting

any itemset at any time. Here are the key aspects of the DICE:

� The DICE keeps track of its current position in the data, denoted by curbasketnum. If

the DICE, wraps around the data, the curbasketnum is not reset; it simply keeps getting

incremented.

� For every itemset, it is counting, the DICE keeps track of the current count of that itemset

and the value of curbasketnum when it started counting it, denoted by since. If curbasketnum

- since ever reaches the total number of baskets, we mark the itemset done and stop counting

it. The support of an itemset may be calculated as count/(curbasketnum-since).

� For e�cient counting, the itemsets are kept in a hash tree [AS94].

� The AddItemset function adds a new itemset to the hash tree and setting its count to 0 and

its since value to curbasketnum.

� The DeleteItemset function removes the itemset from the hash tree, making sure to clear out

all of its memory so new itemsets can be added.

8This is somewhat of a simpli�cation of the DIC algorithm. Interested readers should take a look at [BMUT97].

10

� We assume that the Itemset Manager does not know about all the items that may be in the

data ahead of time. Therefore, the DICE adds counters for any new items it may run across.

An important point is that the since value must be set to 0 instead of curbasketnum.

These properties allow the DICE to provide a fast and simple interface to control and access

itemset counts. The Itemset Manager can take advantage this e�cient mechanism to provide quick

response to user feedback and to the counts it is receiving from the DICE.

3.4 The Weight Function

For our tests, we tried several di�erent weight functions. Let P (S) be the support of an itemset S.

Then we tried the following weight functions.

LogInterest(S) =
log(P (S)Q

i2S
P (fig)

)

jSj

SetInterest(S) = max
i2S

P (S)

P (fig)P (S � fig)

SetConviction(S) = max
i2S

P (S � fig)(1 � P (fig))

P (S � fig)� P (S)

The Set functions require that we know the support of all immediate subsets of an itemset

before we can calculate the weight. Otherwise we can only �nd a lower bound based on the subsets

we do know. For this reason, and because the LogInterest is well normalized based on the number

of items, we chose to experiment the most with LogInterest. In essence, the LogInterest function

is the number of occurrences of an itemset divided by the expectation of that number under the

independence assumption. This ratio is then converted to a logscale and normalized based on the

number of items.

We also applied a support threshhold to our itemsets. While this may seem to contradict the

main point of this paper, the threshhold was only to make sure that the itemsets were indeed

interesting. We set this threshhold at 0.0001. At this threshhold, there were at least 1034 itemsets

which satis�ed it (see Section 5.4).

4 Implementation

We implemented the Dynamic Data Mining system in several components. The Dynamic Itemset

Counting Engine (DICE) is implemented in C++, since it is performance critical. The Itemset

Manager is considerably more complex but less performance critical so it is implemented in Python.

The DICE is wrapped into a python module using SWIG [Bea96] so the Itemset Manager can access

its functions and variables.

11

4.1 The User Interface

For the user interface, the Itemset Manager runs as an HTTP server. This way many users can

interact with the Itemset Manager at the same time, making collaborative data mining possible.

When the server is accessed it produces a web page which consists of three parts. On top are

various statistics and parameter settings. Below that is a text input box which contains metarules

for guiding the mining process. The user can adjust parameter settings and item weights via a

simple language in the text input box.

4.2 The Web Repository

The web pages used for mining are stored compressed in a repository which spans 27 disks on

three computers. In our system, a separate machine reads the repository in a randomized order,

uncompresses and parses the web pages, converts words into unique four-byte integers and feeds

them as market baskets to the data mining system. To date we have collected 24 million web pages.

They contain over 14 million distinct words with an average of 150 distinct words per page.

5 Experiments

In order to test our Dynamic Data Mining system, we ran a number of experiments. We tested

the heavy edge property and its usefulness in mining. We also ran a number of tests dynamic data

mining. These experiments are described in the following sections.

5.1 Testing the Heavy Edge Property

We tested the e�ectiveness of our patterns in generating candidates that are heavy. We did this

by running the DDM system for a short while (40 iterations of the Itemset Manager) and seeing

how each pattern had fared in producing itemsets with di�erent weights. Recall that the Itemset

Manager produces candidates from each of the patterns equally when possible (the more complex

patterns have more complex preconditions so it is not always possible to generate them). The

resulting distributions are plotted in Figure 5. These include two types of itemsets { itemsets that

were generated a number of iterations ago and have survived numerous weight checks and a few

itemsets that have recently been generated and are as of yet untested. Itemsets which don't meet

the support requirement and itemsets which did not meet the weight threshhold in the previous

iteration are not included here.

Notice that while the heaviest itemsets generated by the any pattern are close to the heaviest

itemsets, the any pattern generated far fewer heavy itemsets overall. The reason we use the any

pattern is because it provides a starting point for the other patterns initially and it continues to

provide itemset diversity as the mining process continues.

The other patterns which produce 2-itemsets behave as one may expect with the v pattern

producing the most heavy edges followed by twoend and then oneend. The patterns that produced

12

hyper-v
append
triangle

v
twoend
oneend

any

Weight
543210-1

900

800

700

600

500

400

300

200

100

0

Figure 5: E�ectiveness of Di�erent Patterns at Generating High Weight Itemsets

higher order itemsets produced fewer heavy itemsets but they consistently produced the heaviest

of edges.

All these results indicate that there is a strong relationship between the weight of an itemset

and the weights of its neighbors. This is what one would expect and this veri�es that the Heavy

Edge Property holds on this data set.

5.2 Usefulness of the Heavy Edge Property

In addition to showing that the heavy edge property holds, it is necessary to show that it actually

helped the data mining process. There is a major tradeo� involved in using the HEP for selecting

new itemsets to mine. Using the HEP too strongly and soon can prevent the system from ever

\seeing" a very interesting portion of the hypergraph. This happens because the search is narrowed

by using the HEP property. Therefore, some degree of randomness must be incorporated into the

mining process. This is the reason for including the any pattern.

To test the usefulness of the Heavy Edge Property we attempt to mine using only the any

pattern (purely randomly) versus using all the patterns and we produce a plot of the weights 5000

heaviest itemsets at every iteration. These are shown in Figures 6 and 7. Notice that the purely

random technique �nds some rather heavy edges early on. However, its progress quickly diminishes

in that increasingly heavier edges are not found much past 30 iterations. Furthermore, the random

technique remains dense at the bottom and very light on top all the way through the mining process.

By comparison, the HEP based mining starts a little slow but it continues to grow the weight of

the itemsets it �nds until it is well above the random technique.

Furthermore note that the apparently small di�erence between the two plots are actually quite

13

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90

W
ei

gh
t

Iteration Number

Figure 6: Scatter Plot of Top Weights Using HEP

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90

W
ei

gh
t

Iteration Number

Figure 7: Scatter Plot of Top Weights Using HEP

14

substantial due to the log factor in the weight function.

5.3 Mining Results

Of course the ultimate test of a data mining technique is the quality of the results. In this section,

we present results from various runs of the mining algorithm at di�erent times.

weight itemset support

2.64 photoshop, powermac 0.00118
2.58 rb, rebound 0.00036
2.46 emirates, pakistan 0.00045
2.36 pied, dans 0.00022
2.17 powermac, monitors 0.00077

2.08 media, powermac, technology, star 0.00077
1.82 sponsor, unlimited, try 0.00140
1.63 mike, robert, michael 0.00340
1.61 robert, michael, nancy 0.00107
1.58 media, powermac, technology 0.00080
1.56 media, mb, technology, star 0.00077
1.38 buy, america, product, try 0.00120
1.38 lt, mt, gt 0.00087
...

Figure 8: Itemsets Generated Early in Mining Process { 85000 Baskets Processed

We present the heaviest itemsets of an early part of a run in Figure 8. There are a variety of

somewhat related itemsets. We see several itemsets involving media and powermac and a couple

of itemsets with various names. Later in the mining process, the system begins to �nd stronger

correlations and larger itemsets as we see in Figure 9. There are a number of itemsets of country

names and an itemset of computer jargon. The remainder of the output is mostly about those two

subjects. In Figure 10, we show some interesting, amusing, or characteristic results we have picket

out from various runs.

Other itemsets that DDM has discovered have included state names, sex-related terms, and

sports teams. Some of these discoveries have been rather mundane but some have been quite inter-

esting. We have discovered a number of spam lists { lists of words that web sites use to arti�cially

increase the number of hits they get from search engine users. One particularly interesting example

was a cluster of sex-related terms (which cannot be printed here). What was unusual about it

was that several of the words did not appear to be sex-related at all (for example, \jmis"). Some

searching revealed the explanation. A certain Mr. Lick had received a number of hits on his home

page from sex-related searches. For fun he actually lists all searches that have led to his home page

on the page itself, leading to more hits from sex searches and thus creating a positive feedback

loop. The page now contains a list of hundreds of distinct sex related terms. This list turns out

to be quite useful for sex site administrators who have simply copied it onto their own web pages

15

weight itemset support

5.72 maldives, zambia, �ji, guadeloupe, estonia, rwanda 0.00033
5.67 maldives, uruguay, �ji, guadeloupe, estonia, rwanda 0.00038
5.63 maldives, uruguay, namibia, �ji, estonia, rwanda 0.00040
5.54 maldives, �ji, isls, estonia, rwanda 0.00020
5.47 maldives, denmark, caledonia, ivory, djibouti, rwanda 0.00031
5.46 maldives, namibia, �ji, denmark, estonia, rwanda 0.00039
5.45 guinea, uruguay, zambia, �ji, estonia, rwanda 0.00037
5.43 o�cejet, photosmart, simm, proliant, sportster, nec, portable, cyberstores 0.00119
...

4.10 football, cnn, al, fantasy, league, c
, sportsticker, live, 0.00048
text, crowd, scores, baseball, left, nl, turner

4.10 guadeloupe, denmark, estonia, italy 0.00040
4.10 stb, blaster, gateway, nec, speakers 0.00075

Figure 9: Itemsets Generated Later in Mining Process { 330000 Baskets Processed

weight itemset support

6.03 barbuda, morocco, svalbard, timor, barbados, angola, futuna, 0.00020
slovenia, bolivia, dominican, pitcairn, kiribati, mauritania

6.63 appname, image, toc2on, imgon, img, toc3o� 0.00040
7.28 dissatisfactions, su�er, come, fear, heterosexual, impotence 0.00032

Figure 10: Miscellaneous Interesting Results From Various Runs
9

and even named URL's after the words in that list. In the process, however, a few normal searches

which have led people to Mr. Lick's home page have propagated to many sex sites. It is these

words which the mining process linked to sex.

5.4 Itemsets with Many Items

Some other interesting results of dynamic data mining have been the sizes of the itemsets gener-

ated. The largest itemset generated thus far was a set of 115 computer jargon terms: deskstar,

xpert, microsoft, pin, palm, wordperfect, buy, monitor, viewsonic, apple, helps, needs, backup, mmx,

thinkpad, mystique, robotics, access, stylus, wide, w, scans, cable, deskpro, screen, millennium,

blaster, games, gold, e6, tool, photosmart, processor, motherboard, dell, card, router, miro, brother,

plus, wonder, palmpilot, prices, mb, satellite, systems, lexmark, pc, stock, ethernet, color, word,

quantum, tx, omnibook, major, utilities, corel, shareware, modems, cannon, gateway, directly, simm,

iii, proliant,
atbed, books, phone, desktop, intel, power, sportster, average, nec, updates, memory,

netscape, ink, supermicro, weight, pci, stingray, plextor, dimm, bjc, hercules, portable, download,

art, pda, di�erent, computing, huge, serial, speakers, optra, diamond, adobe, battery, ibm, kodak,

16

fujitsu, tower, audio,
oppy, star, paperport, nt, adaptec, cyberstores, visual, controller, presario,

ultimate. There were other itemsets approaching this size. The discovery of such a large itemset is

important for a number of reasons. First, to the best of our knowledge, this itemset contains far

more items than any rules produced by a conventional data mining technique. If we were mining

for it using a traditional levelwise mining technique, it would require us to test roughly 2115 or

more than 1034 itemsets in order to get to it. Furthermore, it had plenty of support (0.00048 {

more than four times our threshhold) and there are likely many other such itemsets so it is likely

that a traditional support based algorithm would produce more than 1034 itemsets which exceed

the support threshold.

It is arguable that such itemsets are not very interesting. However, in this case, the itemset

represents a legitimate set of words which occur together very often for a good reason. It is

quite likely that the user would want to know about such itemsets. Finally, this itemset concisely

summarizes the relationships within all of its subsets (though those may involve more intricacies).

It should be noted that in our tests of DDM, it frequently converged to the same set of clusters.

However, this was not always the case. There are bene�ts to both having a reliable system that

generally acts the same way or a system that produces new results every time.

5.5 User Feedback

We ran a few simple tests applying user feedback. In one test, we started by arti�cially increasing

the weight of the French word oui and arti�cially decreasing the weight of several computer terms

and country names which frequently clutter the input.

weight itemset support

3.67 egrave,sur,et,la,dans,tout 0.00100
3.61 sur,et,leurs,dans 0.00102
3.59 sur,et,un,dans,tout 0.00110
3.58 egrave,sur,la,dans,tout 0.00085
3.48 sur,et,dans,tout 0.00124
3.43 sur,et,la,dans,tout 0.00127
3.40 egrave,et,la,dans,syst 0.00060
3.40 egrave,et,dans,tout 0.00088
3.38 egrave,et,la,dans,tout 0.00093
3.36 egrave,sur,et,la,dans 0.00260
3.35 sur,de,et,dans,tout 0.00105
3.35 sur,dans,tout 0.00134
3.32 egrave,sur,de,et,dans 0.00260
3.31 sur,la,dans,tout 0.00133
3.30 sur,veloppement,dans 0.00060
3.29 egrave,sur,de,et,la,tout 0.00110
3.29 egrave,la,dans,syst 0.00067

Figure 11: Taken From Top 60 Itemsets After User Increased the Weight of the Word \Oui"

17

After roughly 40 iterations of the Itemset Manager, a number of French itemsets were generated.

The itemsets in Figure 11 all appeared within the top sixty itemsets.

5.6 Performance

We ran our Dynamic Data Mining system on a dual processor 300MHz Pentium II with 512MB

of RAM. The web pages were uncompressed from a repository, parsed from HTML, and converted

into market baskets by a Sun Ultra II and were fed to the Dynamic Data Mining system via TCP.

There are two major components to the performance of dynamic data mining. These compo-

nents are itemset counting in the DICE and the computation done by the Itemset Manager. The

speed of counting itemsets in the DICE is determined largely by the number of itemsets it is count-

ing, their frequency of occurrence in the data set, and the average basket width. For our datasets,

the DICE runs at roughly 100 baskets (documents) per second though it depends heavily on how

many itemsets are being counted. The total number of itemsets is kept under 200,000.

The overhead of the Itemset Manager depends on several parameters. The most important

one is the interval between updates from the DICE. For long runs we set this at 10,000 baskets

(documents) amounting to 5 to 6 minutes between updates. At this interval size the Itemset

Manager had an overhead of 30 to 40 percent. Given that the Itemset Manager is an interpreted

program in the Python language, we were quite happy with its performance. In order to keep this

overhead small, the DICE does some preprocessing by �ltering out itemsets with extremely low

counts (counts below 10).

6 Related Work

The related work to dynamic data mining falls into three categories: user interfaces for data mining,

the use of sampling in data mining, and heuristic search in high dimensional spaces.

There is a considerable amount of work on user interfaces for data mining. Most work has

focussed on postprocessing data mining results so the user can query them and be presented dif-

ferent views [KMR+94]. Feldman et al. demonstrate techniques to visualize text mining results

in [FKZ97]. Agrawal et al. allow the user to specify interests in advance of the mining process [SVA].

There has also been work allowing the user to specify beliefs and determining how the data deviates

from these beliefs [ST96]. However, there has been very little work on interacting with the user

throughout the mining process. Wrobel et al. suggest an architecture for user interaction during

data mining in the KESO system [WWV+96].

Sampling market basket databases has been explored by [Toi96]. Our use of sampling to dy-

namically better estimate itemset counts was presented in [BMUT97]. However, the technique of

sampling the space of itemsets has not been presented before. Also, there has been work studying

itemset lattices as hypergraphs but not in the context of heuristics such as the heavy edge property.

There has also been considerable work regarding the mining of text data. However, our sys-

tem is designed to be a general market basket mining system and we avoided using text-speci�c

18

optimizations.

7 Future Work

Experimenting with dynamic data mining has brought up a number of questions and future research

directions. First, our current system is by no means a complete data mining system. It is a research

tool to test a number of ideas. As it matures it will become more complete and will allow us to

study the ideas we mention here.

A current problem is that one or several major clusters of itemsets can dominate the heavy

itemsets. We need to �nd new ways to ensure diversity heavy itemsets. This includes the possibility

of identifying clusters and limiting their size.

Dynamic Data Mining gives us the opportunity to experiment with complex weighting functions.

In particular we would like to incorporate measures of causality into the weight function. Finally,

we would like to extend the techniques of dynamic data mining to other kinds of data such as time

series data.

8 Conclusions

We have found that dynamic data mining adds several signi�cant enhancements to the process of

data mining. Most importantly, it makes it possible to mine data sets which would be impossible

otherwise. The key to this process is the use of sampling of both the data and the space of itemsets,

the latter being the more important of the two. By forfeiting completeness we are able to drill down

much farther into the rule space, generating rules with as many as 115 items.

The key to sampling the space of itemsets is the Heavy Edge Property (HEP), which hypothe-

sizes that interesting itemsets are likely to be near other interesting itemsets. This makes it much

easier to �nd itemsets with high weight. However, it has the side-e�ect of �nding clusters of items

which is sometimes desirable and sometimes not. Furthermore, it is important to mix use of the

HEP with randomness (for example, via the any pattern) to prevent the mining process from set-

tling in local optima. Of course, in order to be useful the HEP must hold on the data set being

mined. We have found that the HEP holds very strongly on word usage in web pages and believe it

to be true on a wide variety of data sets. We intend to test it on other data sets in the near future.

Furthermore, dynamic data mining allows for quick user feedback. Instead of waiting for a long

data mining job to run, the user can get results as they happen from the system and adjust the

mining based on those results. When mining a space with many complex and highly correlated

interactions, this feedback is very important. Also, the user interface which is implemented as a

web server, allows for collaborative data mining. Any user at any location may adjust parameters

or weightings of items as the system is running.

Dynamic data mining has several other nice properties. First, it can work on continuous data

streams. This means that it is possible to mine data from live data sources or to mine data which

one cannot a�ord to store on disk. For example, it is possible to mine the entire World Wide Web

19

without storing a single web page (Note that it is still necessary to store some large data structures

for crawling such as url queues). Another use of this property is mining where quick reaction to

new relationships is important such as data feeds from stock and currency exchanges.

In summary, dynamic data mining is a very e�ective tool for data exploration, particularly when

it is not feasible to completely explore the space of rules. It provides results quickly independent

of the size of the data set and re�nes them as it progresses.

References

[AIS93] R. Agrawal, T. Imilienski, and A. Swami. Mining Association Rules between Sets of

Items in Large Databases. Proc. of the ACM SIGMOD Int'l Conf. on Management of

Data, pages 207{216, May 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings

of the 20th VLDB Conference, Santiago, Chile, 1994.

[AS96a] R. Agrawal and J. Shafer. Parallel Mining of Association Rules: Design Implementa-

tion and Experience. Technical report, IBM Research Division, Almaden, California,

February 1996.

[AS96b] R. Agrawal and J. C. Shafer. Parallel mining of association rules. Ieee Trans. On

Knowledge And Data Engineering, 8:962{969, 1996.

[AY] Charu Aggarwal and Phillip Yu. A new framework for itemset generation. In PODS

1998, to appear.

[Bea96] David M. Beazley. SWIG: An easy to use tool for integrating scripting languages with

C and C++. In USENIX Association, editor, 4th Annual Tcl/Tk Workshop '96, July

10{13, 1996. Monterey, CA, pages 129{139, Berkeley, CA, USA, July 1996. USENIX.

[BMS97] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets: General-

izing association rules to correlations. SIGMOD Record (ACM Special Interest Group

on Management of Data), 26(2):265, 1997.

[BMUT97] Sergey Brin, Rajeev Motwani, Je�rey D. Ullman, and Shalom Tsur. Dynamic itemset

counting and implication rules for market basket data. SIGMOD Record (ACM Special

Interest Group on Management of Data), 26(2):255, 1997.

[CNFF96] D. W. Cheung, V. T. Ng, A. W. Fu, and Y. J. Fu. E�cient mining of association rules

in distributed databases. Ieee Trans. On Knowledge And Data Engineering, 8:911{922,

December 1996.

[FKZ97] Ronen Feldman, Willi Kl�osgen, and Amir Zilberstein. Visualization techniques to

explore data mining results for document collections. In David Heckerman, Heikki

20

Mannila, Daryl Pregibon, and Ramasamy Uthurusamy, editors, Proceedings of the

Third International Conference on Knowledge Discovery and Data Mining (KDD-97),

page 16. AAAI Press, 1997.

[KMR+94] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and A. Inkeri

Verkamo. Finding interesting rules from large sets of discovered association rules. In

Nabil R. Adam, Bharat K. Bhargava, and Yelena Yesha, editors, Third International

Conference on Information and Knowledge Management (CIKM'94), pages 401{407.

ACM Press, November 1994.

[Mue95] Andreas Mueller. Fast sequential and parallel algorithms for association rule mining:

A comparison. Technical Report CS-TR-3515, Dept. of Computer Science, Univ. of

Maryland, College Park, MD, August 1995.

[ST96] A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge dis-

covery systems. Ieee Trans. On Knowledge And Data Engineering, 8:970{974, 1996.

[SVA] Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining association rules with

item constraints. page 67.

[Toi96] H. Toivonen. Sampling large databases for association rules. Proc. of the Int'l Conf.

on Very Large Data Bases (VLDB), 1996.

[WWV+96] Stefan Wrobel, Dietrich Wettschereck, A. Inkeri Verkamo, Arno Siebes, Heikki Man-

nila, Fred Kwakkel, and Willi Kl�osgen. User interactivity in very large scale data

mining. In W. Dilger, M. Schlosser, J. Zeidler, and A. Ittner, editors, Proc. FGML-96

(Annual Meeting of the GI Special Interest Group Machine Learning), pages 125{130,

09111 Chemnitz, August 1996. TU Chemnitz-Zwickau. Computer Science Technical

Report No. CSR-96-06.

[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discov-

ery of association rules. In David Heckerman, Heikki Mannila, Daryl Pregibon, and

Ramasamy Uthurusamy, editors, Proceedings of the Third International Conference on

Knowledge Discovery and Data Mining (KDD-97), page 283. AAAI Press, 1997.

21

