
Dynamic Data Warehouse Design ?

Dimitri Theodoratos Timos Sellis

Department of Electrical and Computer Engineering

Computer Science Division

National Technical University of Athens

Zographou 157 73, Athens, Greece

fdth,timosg@dblab.ece.ntua.gr

Abstract. A data warehouse (DW) can be seen as a set of materialized

views de�ned over remote base relations. When a query is posed, it is

evaluated locally, using the materialized views, without accessing the

original information sources. The DWs are dynamic entities that evolve

continuously over time. As time passes, new queries need to be answered

by them. Some of these queries can be answered using exclusively the

materialized views. In general though new views need to be added to the

DW.

In this paper we investigate the problem of incrementally designing a

DW when new queries need to be answered and extra space is allocated

for view materialization. Based on an AND/OR dag representation of

multiple queries, we model the problem as a state space search problem.

We design incremental algorithms for selecting a set of new views to

additionally materialize in the DW that �ts in the extra space, allows a

complete rewriting of the new queries over the materialized views and

minimizes the combined new query evaluation and new view maintenance

cost.

1 Introduction

Data warehouses store large volumes of data which are frequently used by com-

panies for On-Line Analytical Processing (OLAP) and Decision Support Sys-

tem (DSS) applications. Data warehousing is also an approach for integrating

data from multiple, possibly very large, distributed, heterogeneous databases

and other information sources.

A Data Warehouse (DW) can be abstractly seen as a set of materialized

views de�ned over a set of (remote) base relations. OLAP and DSS applications

make heavy use of complex grouping/aggregation queries. In order to ensure

high query performance, the queries are evaluated locally at the DW, using

exclusively the materialized views, without accessing the original base relations.

When the base relations change, the materialized at the DW views need to

be updated. Di�erent maintenance policies (deferred or immediate) and main-

tenance strategies (incremental or rematerialization) can be applied.
? Research supported by the European Commission under the ESPRIT Program LTR

project "DWQ: Foundations of Data Warehouse Quality"

1.1 The problem: Dynamic Data Warehouse Design

DWs are dynamic entities that evolve continuously over time. As time passes,

new queries need to be answered by them. Some of the new queries can be

answered by the views already materialized in the DW. Other new queries, in

order to be answered by the DW, necessitate the materialization of new views.

In any case, in order for a query to be answerable by the DW, there must exist

a complete rewriting [5] of it over the (old and new) materialized views. Such

a rewriting can be exclusively over the old views, or exclusively over the new

views, or partially over the new and partially over the old views. If new views

need to be materialized, extra space need to be allocated for materialization.

One way for dealing with this issue is to re-implement the DW from scratch

for the old and the new queries. This is the static approach to the DW de-

sign problem. Re-implementing the DW from scratch though, has the following

disadvantages:

(a) Selecting the appropriate set of views for materialization that satis�es the

conditions mentioned above is a long and complicated procedure [9, 10, 8].

(b) During the materialization of the views in the DW, some old view material-

izations are removed from the DW while new ones are added to it. Therefore,

the DW is no more fully operational. Given the sizes of actual DWs and the

complexity of views that need to be computed, the load window required to

make the DW operational may become unacceptably long.

In this paper we address the Dynamic DW Design Problem: given a DW (a set

of materialized views), a set of new queries to be answered by it and possibly

some extra space allocated for materialization to the DW, select a set of new

views to additionally materialize in the DW such that:

1. The new materialized views �t in the extra allocated space.

2. All the new queries can be answered using exclusively the materialized views

(the old and the new).

3. The combination of the cost of evaluating the new queries over the materi-

alized views and the cost of maintaining the new views is minimal.

1.2 Contribution and outline

The main contributions of this paper are the following:

- We set up a theoretical basis for incrementally designing a DW by formulating

the dynamic DW design problem. The approach is applicable to a broad class

of queries, including queries involving grouping and aggregation operations.

- Using an AND/OR dag representation of multiple queries (multiquery

AND/OR dags) we model the dynamic DW design problem as a state space

search problem. States are multiquery AND/OR dags representing old and

new materialized views and complete rewritings of all the new queries over

the materialized views. Transitions are de�ned through state transformation

rules.

- We prove that the transformation rules are sound, and complete. In this sense

a goal state (an optimal solution) can be obtained by applying transformation

rules to an initial state.

- We design algorithms for solving the problem that incrementally compute

the cost and the size of a state when moving from one state to another.

- The approach can also be applied for statically designing a DW, by consid-

ering that the set of views already materialized in the DW is empty.

This paper is organized as follows. Next section contains related work. In Section

3, we provide basic de�nitions and state formally the DW design problem. In

Section 4 the dynamic DW design problem is modeled as a state space search

problem. Incremental algorithms are presented in Section 5. The �nal section

contains concluding remarks. A more detailed presentation can be found in [11].

2 Related work

We are not aware of any research work addressing the incremental design of a

DW. Static design problems using views usually follow the following pattern:

select a set of views to materialize in order to optimize the query evaluation

cost, or the view maintenance cost or both, possibly in the presence of some

constraints.

Work reported in [2, 3] aims at optimizing the query evaluation cost: in [2]

greedy algorithms are provided for queries represented as AND/OR graphs under

a space constraint. A variation of this paper aims at minimizing the total query

response time under the constraint of total view maintenance cost [3].

[6] and [4] aim at optimizing the view maintenance cost: In [6], given a ma-

terialized SQL view, an exhaustive approach is presented as well as heuristics

for selecting additional views that optimize the total view maintenance cost. [4]

considers the same problem for select-join views and indexes together.

The works [7, 12] aim at optimizing the combined query evaluation and view

maintenance cost: [7] provides an A* algorithm in the case where views are seen

as sets of pointer arrays under a space constraint. [12] considers the problem for

materialized views but without space constraints.

None of the previous approaches requires the queries to be answerable exclu-

sively from the materialized views in a non-trivial manner. This requirement is

taken into account in [9] where the problem of con�guring a DW without space

restrictions is addressed for a class of select-join queries. This work is extended

in [10] in order to take into account space restrictions, multiquery optimization

over the maintenance queries, and auxiliary views, and in [8] in order to deal

with PSJ queries under space restrictions.

3 Formal statement of the problem

In this section we formally state the dynamic DW design problem after providing

initial de�nitions.

De�nitions. We consider relational algebra queries and views extended with

additional operations as for instance grouping/aggregation operations. Let R

be a set of base relations. The DW initially contains a set V0 of materialized

views de�ned over R, called old views. A set Q of new queries de�ned over R

needs to be answered by the DW. It can be the case that these queries can be

answered using exclusively the old views. In general though, in order to satisfy

this requirement, a set V of new materialized views needs to be added to the

DW. Since the queries in Q can be answered by the new state of the DW, there

must exist a complete rewriting of every query in Q over the views in V0 [V.

Let Q 2 Q. By QV , we denote a complete rewriting of Q over V0 [V. This

notation is extended to sets of queries. Thus, we write QV , for a set containing

the queries in Q, rewritten over V0 [V.

Generic cost model. The evaluation cost of QV , denoted E(QV), is the

weighted sum of the cost of evaluating every query rewriting in QV .

In de�ning the maintenance cost of V one should take into consideration

that the maintenance cost of a view, after a change to the base relations, may

vary with the presence of other materialized views in the DW [6]. As in [6], we

model the changes to di�erent base relations by a set of transaction types. A

transaction type speci�es the base relations that change, and the type and size

of every change. The cost of propagating a transaction type is the cost incurred

by maintaining all the views in V that are a�ected by the changes speci�ed by

the transaction type, in the presence of the views in V [V0. The maintenance

cost of V, denoted M(V), is the weighted sum of the cost of propagating all the

transaction types to the materilaized views in V.

The operational cost of the new queries and views is T (QV ;V) = E(QV) +

cM(V). The parameter c; c � 0, is set by the DW designer and indicates the

relative importance of the query evaluation vs. the view maintenance cost.

The storage space needed for materializing the views in V is denoted S(V).

Problem statement.We state now the dynamic DW design problem as follows.

Input

A set V0 of old views over a set R of base relations.

A set Q of new queries over R.

Functions, E for the query evaluation cost, M for the view maintenance cost

and S for the materialized views space.

A constant t indicating the extra space allocated for materialization.

A constant c.

Output

A set of new views V over R such that:

(a) S(V) � t.

(b) There is a set QV of complete rewritings of the queries in Q overV0[V.

(c) T (QV ;V) is minimal.

4 The dynamic DW design as a state space search

problem

We model, in this section, the dynamic DW design problem as a state space

search problem.

4.1 Multiquery AND/OR dags

A query dag for a query is a rooted directed acyclic graph that represents the

query's relational algebra expression. Query dags do not represent alternative

equivalent relational algebra rewritings of the query de�nition over the base re-

lations (that is alternative ways of evaluating the query). Alternative rewritings

can be represented compactly by using AND/OR dags [7]. A convenient repre-

sentation of query evaluations using AND/OR dags [6] is adopted in rule-based

optimizers [1]. This representation, distinguishes between AND nodes and OR

nodes: a query AND/OR dag for a query is a rooted bipartite AND/OR dag GQ.

The nodes are partitioned into AND nodes and OR nodes. AND nodes are called

operation nodes and are labeled by a relational algebra operator while OR nodes

are called equivalence nodes and are labeled by a relational algebra expression (a

view). The root node and the sink nodes of GQ are equivalence nodes labeled by

the query Q and the base relations respectively. In the following we may identify

equivalence nodes with their labels.

An AND/OR dag G0

Q is a subdag of an AND/OR dag GQ if dag G0

Q is a

subdag of dag GQ, and for every AND (operation) node in G0

Q, all its incoming

and outgoing edges in GQ are also present in G0

Q. An AND/OR dag is an AND

dag if no OR (equivalence) node has more than one outgoing edges.

Multiple queries and alternative ways of evaluation can be represented by

multiquery AND/OR dags. A multiquery AND/OR dag for a set of queries is a

bipartite AND/OR dag, similar to a query AND/OR dag, except that it does

not necessarily have a single root. Every query in the query set is represented

by an equivalence node in the multiquery AND/OR dag. Equivalence nodes

representing queries are called query nodes and their labeling expressions are

preceded in the multiquery dag by a *. All the root nodes (and possibly some

other equivalence nodes) are query nodes.

Example 1. Consider the relations Department(DeptID, DeptName) (D for short)

and Employee(EmpID, EmpName, Salary, DeptID) (E for short). An under-

lined attribute denotes the primary key of the relation. Figure 1 shows a multi-

query AND/OR dag G for the queries Q1 = �Salary>1000(E 1 D) and

Q2 =< DeptID; DeptName > F < AVG(Salary) > (�Salary>1000(E 1 D)). Some

attribute names are abbreviated in the �gure in a self-explanatory way. Notice

E D

1

�S>1000
1

1<DID,DN> F <AVG(S)>

�Q1

�S>1000

<DID> F <AVG(S)> (�S>1000(E))

�S>1000(E) E 1 D

<DID> F <AVG(S)>

�Q2

Fig. 1. A multiquery AND/OR dag for the queries Q1 and Q2

also that the query node labeled by �Q1 is not a root node. Three alternative

rewritings over the base relations for query Q2 are represented in G. 2

4.2 States

A multiquery AND/OR G determines, in our context, the views and the rewrit-

ings of the queries in Q over views that can be under consideration for solving

the dynamic DW problem.

De�nition 1. Given G and V0, a state s is an AND/OR subdag of G, where

some equivalence nodes may be marked, such that:

(a) All the query nodes of G are present in s,

(b) All the equivalence nodes of G that are in V0 are present in s and these are

the only marked nodes in s,

(c) Only query nodes or marked nodes can be root nodes. 2

Intuitively, sink nodes represent views materialized in the DW. Marked nodes

represent the old views (already materialized in the initial DW) that can be used

in the rewriting of a new query. Sink nodes that are not marked represent new

materialized views. A query dag for a query Q in s is a connected AND subdag

of s rooted at query node Q in s whose sink nodes are among the sink nodes

of s. It represents a complete rewriting of Q over the materialized views (sink

nodes) of s. Since all the query nodes of G are present in s, there is at least one

query dag for a query Q in s, for every query Q in Q. Therefore, a state provides

information for both:

(a) new views to materialize in the DW, and

(b) complete rewritings of each new query over the old and the new materialized

views.

Example 2. Figures 2-3 show di�erent states for the multiquery graph of Figure 1

whenV0 = fDg. The labels of the operation nodes are written symbolically in the

�gures. Marked nodes are depicted by �lled black circles. For instance, in Figure

3(a), the nodes E, D and V1, where V1 = �Salary>1000(E), are materialized views.

Node D is an old view and E and V1 are new views. Two alternative rewritings for

the query Q1 are represented: the query de�nition Q1 = �Salary>1000(E 1 D) and

a rewriting of Q1 using the materialized view V1, Q1 = V1 1 D. For the query

Q2 the rewriting Q2 =< DeptID > F < AVG(Salary) > (V1) 1 D is represented.

In the state of Figure 3(c) the only new materialized view is queryQ1. The fol-

lowing rewriting is represented:Q2 =< DeptID; DeptName> F < AVG(Salary) >

(Q1). Note that this state is not a connected graph. 2

With every state s, a cost and a size is associated through the functions cost

and size respectively: cost(s) = T (QV ;V), while size(s) = S(V).

4.3 Transitions

In order to de�ne transitions between states we introduce two state transfor-

mation rules. The state transformations may modify the set of sink nodes of a

state, and remove some edges from it. Therefore, they modify, in general, the

set of new views to materialize in the DW and the rewritings of the new queries

over the materialized views.

State transformation rules. Consider a state s. A path from a query node Q

to a node V is called query free if there is no node in it other than Q and V that

is a query node.

R1 Let Q be a query node and V be a non-sink equivalence node in s. Nodes

Q and V need not necessarily be distinct, but if they are distinct, V should

not be a query node. If

(a) there is a query free path from Q to V , or nodes Q and V coincide, and

(b) there is no path from V to a non-marked sink node that is not a base

relation,

then:

(a) Remove from s all the edges and the non-marked or non-query nodes

(except V) that are on a path from V , unless they are on a path from

a query node that does not contain V . (Thus, node V becomes a sink

node.)

(b) Remove from the resulting state all the edges and the non-marked or

non-query nodes that are on a path from Q, unless they are on a query

dag for Q in s that contains a query free path from Q to V , or they are

on a path from a query node that does not contain Q.

R2 LetQ be a query node and V be a distinct equivalence node in s, that is a sink

or a query node and is not a base relation. (V can be a marked node). If

(a) there is a query free path from Q to V , and

(b) there is a query dag for Q in s that does not contain a query free path

from Q to V ,

then:

Remove all the edges and the non-marked or non-query nodes that are

on a path from Q, unless they are on a query dag for Q in s that contains

a query free path from Q to V , or they are on a path from a query node

that does not contain Q.

Example 3. Consider the state s of Figure 2(a). We apply in sequence state

transformation rules to s. Figure 2(b) shows the state resulting by the application

(a) (b)

E D

1

1

1

< : > F < : >

�Q2

< :; : > F < : >

�Q1 V3

V1

�

�

V2

D

1

1

< : > F < : >

�Q2

< :; : > F < : >

�Q1 V3

V1

Fig. 2. States

of R1 to query node Q1 and to equivalence node V1 of s. By applying R1 to nodes

Q2 and V1 of s, we obtain the state of Figure 3(a). The state of Figure 3(b) results

(b)(a) (c)

V1

�Q1

< :; : > F < : >

�Q2

1

DE D

1

1

1

< : > F < : >

�Q2

�Q1 V3

V1

�

V2

�Q1

�Q2

D

< :; : > F < : >

Fig. 3. States resulting by the application of the state transformation rules

from the application of R2 to query nodes Q2 and Q1 of the state of Figure 2(b).

Figure 3(c) shows the state resulting by the application of R1 to nodesQ2 andQ1

of state s (Figure 2(a)). Query node Q1 represents now a materialized view. 2

The state transformation rules are sound in the sense that the application of a

state transformation rule to a state results in a state. Note that the soundness of

the state transformation rule entails that a transformation of a state preserves

the existence of a complete rewriting of all the new queries over the materialized

views.

We say that there is a transition T (s; s0) from state s to state s0 if and only

if s0 can be obtained by applying a state transformation rule to s.

4.4 The search space

We de�ne in this subsection the search space. We �rst provide initial de�nitions

and show that the state transformation rules are complete.

De�nition 2. Given G and V0, the initial state s0 is a state constructed as

follows. First, mark all the equivalence nodes of G that are in V0. Then, for each

marked node, remove all the edges and the non-marked or non-query nodes that

are on a path from this marked node, unless they are on a path from a query

node and this path does not contain the marked node. 2

Assumptions. We assume that all the views and the rewritings of the new

queries over the views considered are among those that can be obtained from

the multiquery AND/OR dag G. Further, consider a set ofV of new materialized

views and let QV be a set of cheapest rewritings of the queries in Q overV0[V.

In computing the view maintenance cost of V, we assume that a materialized

view that does not occur inQV is not used in the maintenance process of another

view in V.

De�nition 3. Given G and V0, a goal state sg is a state such that there exists

a solution V satisfying the conditions:

(a) The non-marked sink nodes of sg are exactly the views in V, and

(b) The cheapest rewritings of the queries inQ overV0[V are represented in sg .

The following theorem is a completeness statement for the state transformation

rules.

Theorem 1. Let G be a multiquery AND/OR dag for a set of new queries Q,

and V0 be a set of old views. If there is a solution to the DW design problem, a

goal state for G and V0 can be obtained by �nitely applying in sequence the state

transformation rules to the initial state for G and V0. 2

Search space de�nition. Viewing the states as nodes and the transitions be-

tween them as directed edges of a graph, the search space is determined by the

initial state and the states we can reach from it following transitions in all possi-

ble ways. Clearly, the search space is, in the general case, a �nite rooted directed

acyclic graph which is not merely a tree. As a consequence of Theorem 1, there

is a path in the search space from the initial state s0 to a goal state sg.

5 Algorithms

In this section we present incremental algorithms for the dynamic DW design

problem. Heuristics that prune the search space are provided in [11].

The cost and the size of a new state s0 can be computed incrementally along

a transition T (s; s0) from a state s to s0 [11]. The basic idea is that instead

of recomputing the cost and the size of s0 from scratch, we only compute the

changes incurred to the query evaluation and view maintenance cost, and to the

storage space of s, by the transformation corresponding to T (s; s0).

Any graph search algorithm can be used on the search space to exhaustively

examine the states (by incrementally computing their cost and size), and return a

goal state (if such a state exists). We outline below, a variation of the exhaustive

algorithm guaranteeing a solution that �ts in the allocated space, and a second

one that emphasizes speed at the expense of e�ectiveness.

A two phase algorithm. This algorithm proceeds in two phases. In the �rst

phase, it proceeds as the exhaustive algorithm until a state satisfying the space

constraint is found. In the second phase, it proceeds in a similar way but excludes

from consideration the states that do not satisfy the space constraint. A two

phase algorithm is guaranteed to return a solution that �ts in the allocated

space, if a goal state exists in the search space. In the worst case though, it

exhaustively examines all the states in the search space.

An r-greedy algorithm. Exhaustive algorithms can be very expensive for a

large number of complex queries. The r-greedy algorithm proceeds as follows:

for a state considered (starting with the initial state) all the states that can be

reached following at most r transitions are systematically generated and their

cost and size are incrementally computed. Then, the state having minimal cost

among those that satisfy the space constraint, if such a state exists, or a state

having minimal size, in the opposite case, is chosen for consideration among

them. The algorithm keeps the state sf satisfying the space constraint and hav-

ing the lowest cost among those examined. It stops when no states can be gen-

erated from the state under consideration and returns sf . This algorithm is not

guaranteed to return a solution to the problem that �ts in the allocated space,

even if a goal state exists.

6 Conclusion

In this paper we have dealt with the issue of incrementally designing a DW by
stating and studying the dynamic DW design problem: given a set of old views
materialized in the DW, a set of new queries to be answered by the DW, and
extra space allocated for materialization, select a set of new views to materialize
in the DW that �ts in the extra space, allows a complete rewriting of the new
queries over the materialized views and minimizes the combined evaluation cost
of the new queries and the maintenance cost of the new views. A dynamic DW
design process allows the DW to evolve smoothly in time, without interrupting its
operation due to materialized view removal. We have modeled the dynamic DW
design problem as a state space search problem, using a multiquery AND/OR
dag representation of the new queries. Transitions between states are de�ned
through state transformation rules which are proved to be sound and complete.
We have designed generic incremental algorithms and heuristics to reduce the
search space. Also shown is that this approach can be used for statically designing
a DW.

References

[1] G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility

and E�cient Search. In Proc. of the 9th Intl. Conf. on Data Engineering, 1993.

[2] H. Gupta. Selection of Views to Materialize in a Data Warehouse. In Proc. of the

6th Intl. Conf. on Database Theory, pages 98{112, 1997.

[3] H. Gupta and I. S. Mumick. Selection of Views to Materialize Under a Maintenance

Cost Constraint. In Proc. of the 7th Intl. Conf. on Database Theory, 1999.

[4] W. Labio, D. Quass, and B. Adelberg. Physical Database Design for Data Ware-

housing. In Proc. of the 13th Intl. Conf. on Data Engineering, 1997.

[5] A. Levy, A. O. Mendelson, Y. Sagiv, and D. Srivastava. Answering Queries using

Views. In Proc. of the ACM Symp. on Principles of Database Systems, 1995.

[6] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized View Maintenance

and Integrity Constraint Checking: Trading Space for Time. In Proc. of the ACM

SIGMOD Intl. Conf. on Management of Data, pages 447{458, 1996.

[7] N. Roussopoulos. View Indexing in Relational Databases. ACM Transactions on

Database Systems, 7(2):258{290, 1982.

[8] D. Theodoratos, S. Ligoudistianos, and T. Sellis. Designing the Global Data

Warehouse with SPJ Views. To appear in Proc. of the 11th Intl. Conf. on Advanced

Information Systems Engineering, 1999.

[9] D. Theodoratos and T. Sellis. Data Warehouse Con�guration. In Proc. of the

23rd Intl. Conf. on Very Large Data Bases, pages 126{135, 1997.

[10] D. Theodoratos and T. Sellis. Data Warehouse Schema and Instance Design. In

Proc. of the 17th Intl. Conf. on Conceptual Modeling, pages 363{376, 1998.

[11] D. Theodoratos and T. Sellis. Dynamic Data Warehouse Design. Technical Report,

Knowledge and data Base Systems Laboratory, Electrical and Computer Engineer-

ing Dept., National Technical University of Athens, pages 1{25, 1998.

[12] J. Yang, K. Karlapalem, and Q. Li. Algorithms for Materialized View Design in

Data Warehousing Environment. In Proc. of the 23rd Intl. Conf. on Very Large

Data Bases, pages 136{145, 1997.

